Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167137, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38527593

RESUMO

BACKGROUND: Postoperative Cognitive Dysfunction (POCD) has attracted increased attention, but its precise mechanism remains to be explored. This study aimed to figure out whether HDAC6 could regulate NLRP3-induced pyroptosis by modulating the functions of HSP70 and HSP90 in microglia to participate in postoperative cognitive dysfunction in aged mice. METHODS: Animal models of postoperative cognitive dysfunction in aged mice were established by splenectomy under sevoflurane anesthesia. Morris water maze was used to examine the cognitive function and motor ability. Sixteen-months-old C57BL/6 male mice were randomly divided into six groups: control group (C group), sham surgery group (SA group), splenectomy group (S group), splenectomy + HDAC6 inhibitor ACY-1215 group (ACY group), splenectomy + HDAC6 inhibitor ACY-1215 + HSP70 inhibitor Apoptozole group (AP group), splenectomy + solvent control group (SC group). The serum and hippocampus of mice were taken after mice were executed. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, cleaved-Caspase-1 (P20), IL-1ß were detected by western blotting. Serum IL-1ß, IL-6 and S100ß were measured using ELISA assay, and cell localization of HDAC6 was detected by immunofluorescence. In vitro experiments, BV2 cells were used to validate whether this mechanism worked in microglia. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, P20, IL-1ß were detected by western blotting and the content of IL-1ß in the supernatant was measured using ELISA assay. The degree of acetylation of HSP90, the interaction of HSP70, HSP90 and NLRP3 were analyzed by coimmunoprecipitation assay. RESULTS: Splenectomy under sevoflurane anesthesia in aged mice could prolong the escape latency, reduce the number of crossing platforms, increase the expression of HDAC6 and activate the NLRP3 inflammasome to induce pyroptosis in hippocampus microglia. Using ACY-1215 could reduce the activation of NLRP3 inflammasome, the pyroptosis of microglia and the degree of spatial memory impairment. Apoptozole could inhibit the binding of HSP70 to NLRP3, reduce the degradation of NLRP3 and reverse the protective effect of HDAC6 inhibitors. The results acquired in vitro experiments closely resembled those in vivo, LPS stimulation led to the pyroptosis of BV2 microglia cells and the release of IL-1ß due to the activation of the NLRP3 inflammasome, ACY-1215 showed the anti-inflammatory effect and Apoptozole exerted the opposite effect. CONCLUSIONS: Our findings suggest that hippocampal HDAC6 promotes POCD by regulating NLRP3-induced microglia pyroptosis via HSP90/HSP70 in aged mice.

2.
Cell Death Discov ; 7(1): 339, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750369

RESUMO

The uncontrolled inflammatory response caused by a disorder in inflammation resolution is one of the reasons for acute respiratory distress syndrome (ARDS). The macrophage pool markedly expands when inflammatory monocytes, known as recruited macrophages, migrate from the circulation to the lung. The persistent presence of recruited macrophages leads to chronic inflammation in the resolution phase of inflammation. On the contrary, elimination of the recruited macrophages at the injury site leads to the rapid resolution of inflammation. Resolvin D1 (RvD1) is an endogenous lipid mediator derived from docosahexaenoic acid. Mice were administered RvD1 via the tail vein 3 and 4 days after stimulation with lipopolysaccharide. RvD1 reduced the levels of the inflammatory factors in the lung tissue, promoted the anti-inflammatory M2 phenotype, and enhanced the phagocytic function of recruited macrophages to alleviate acute lung injury. We also found that the number of macrophages was decreased in BAL fluid after treatment with RvD1. RvD1 increased the apoptosis of recruited macrophages partly via the FasL-FasR/caspase-3 signaling pathway, and this effect could be blocked by Boc-2, an ALX/PRP2 inhibitor. Taken together, our findings reinforce the concept of therapeutic targeting leading to the apoptosis of recruited macrophages. Thus, RvD1 may provide a new therapy for the resolution of ARDS.

3.
J Inflamm Res ; 14: 2301-2315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34103963

RESUMO

OBJECTIVE: Perioperative neurocognitive disorders (PND) are a common complication in the elderly. Histone deacetylases (HDACs) are a class of enzymes that control the acetylation status of intracellular proteins. Thus, we explored whether HDACs trigger the release of high mobility group box 1 (HMGB1) through altering the acetylation status in the hippocampi of aged mice. MATERIALS AND METHODS: The effect of the Class IIa HDAC in PND was explored using an in vivo form of splenectomy. Sixteen-month-old healthy male C57BL/6J mice were randomly divided into five groups: control, anesthesia plus sham surgery, anesthesia plus splenectomy, LMK235 treatment, and PBS treatment. The hippocampi were harvested on either first, third, or seventh postoperative day. Cognitive function was assessed via a Morris water maze (MWM) test. Quantitative RT-PCR, Western blots and ELISAs were carried out to assess the targeted gene expression at transcriptional and translational levels. RESULTS: Splenectomy led to a significant deficiency in spatial memory acquisition, marked decreases in mRNA and protein levels of HDAC4 and HDAC5 in the hippocampus, and increases in the levels of total HMGB1 and acetylated HMGB1. In a similar fashion to splenectomy, treatment with the HDAC4/5 inhibitor LMK235 produced impaired spatial memory and an increase in the expression of HMGB1 and its acetylated counterpart in the hippocampus. CONCLUSION: These results suggest that surgery leads to PND through class IIa HDAC downregulation-triggered HMGB1 release in hippocampus of aged mice. HDACs may be a potential therapeutic target for postoperative cognitive dysfunction.

4.
Am J Transl Res ; 12(12): 8111-8122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33437385

RESUMO

OBJECTIVES: Elderly patients often suffer from cognitive dysfunction following surgery. However, the mechanisms underlying this phenomenon still remain unclear. This study investigated the critical part of Sirtuin-1 (SIRT1)-mediated autophagy and apoptosis in surgery-induced cognitive impairment. METHODS: The aged (16-month-old) male C57BL/6 mice underwent anesthesia and surgery. Some mice received intraperitoneal injections of resveratrol, which is an activator of SIRT1, prior to exposure to splenectomy. To examine learning and memory behavior in different sets, the study performed a Morris water maze. Tissues from the hippocampus were harvested 1, 3 and 7 days after surgery. Western blotting and immunofluorescence analysis determined the expression of autophagy- and apoptosis- associated protein. RESULTS: This article demonstrated surgery but not anesthesia considerably affected memory behavior and downregulated SIRT1 expression in the aged mice. Interestingly, rescue of hippocampal SIRT1 expression ameliorated the cognitive impairment in the elderly mice under splenectomy. In addition, surgical trauma decreased Beclin-1 protein levels and the LC3-II/LC3-I ratio, while expression of p62, Bax and cleaved caspase-3 in hippocampal neurons increased. However, rescue of hippocampal SIRT1 expression considerably attenuated the surgery-induced downregulation of Beclin-1, increased the ratio of LC3-II/LC3-I, and decreased expression of p62, Bax, and cleaved caspase-3. CONCLUSION: These findings suggest that surgery-induced downregulation of hippocampal SIRT1 participates in cognitive impairment after surgery by inhibiting the autophagy process and activating apoptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA